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0. Introduction

This paper presents a unified view of certain vertex operator constructions for
some of the extended affine Lie algebras (EALA’s for short) which are coordina-
tized by certain quantum tori. Recall that for the affine Kac-Moody Lie algebras
vertex operator representations were developed in [LW] and [KKLW] for the prin-
cipal realizations and in [FK], [S] in the homogeneous realization. Our motivation
comes from the paper [F1] of I. Frenkel, where he presented a unified construction
for both the principal and homogeneous realizations of the affine Lie algebras of
type A, This is accomplished by using the affine algebra él u Tather than slat.
Moreover, Frenkel used a Clifford algebra structure, which was inherent in his
situation, to define a new type of normal ordering which then led to his unified
view. The Clifford structure had been studied before in the works [F3,4] and
[KP].

The structure theory of EALA’s has been developed over the last ten years
(see [H-KT], [BGK],[AABGP] and [ABGP]). Roughly speaking these Lie al-
gebras are generalizations of both the affine Kac-Moody Lie algebras and the
finite-dimensional simple Lie algebras over the complex numbers which admit
Laurent-like coordinates in a finite number of variables. It turns out that alge-
bras of different types admit different types of coordinates. For example, those
of type A; admit the non-commutative quantum torus as coordinates (see [M],
[BGK]). Representations for these Lie algebras over quantum tori have been con-
structed in [JK], [G-KK], [G1,2,3], [BS], [VV]. When I = 1 there are even Jordan
algebras which serve as coordinates of EALAs. The study of representations for
this type of Lie algebra has been initiated in [T1]. Perhaps the examples which
have attracted the most attention so far are the toroidal algebras which have the
commutative associative Laurent polynomials as their coordinates. The toroidal
algebras have been studied since the mid-80’s both in terms of their structure
theory as well as their representation theory (see for example [F2], [MRY], [Y],
[W], [BC], [FIW], [T2]). For our purposes we want to mention that vertex opera-
tor representations have played a predominant role in much of this work. Indeed,
in [G1,2], one finds both homogeneous and principal realizations given for many
of the EALA’s of type A. The principal realization for those EALAs was also
implicitly given by [G-KK] in studying the so-called I'-conformal algebras. Our
goal in this work is to unify the various approaches and show how they all follow
from the same type of approach. Of course, the work in the affine case, namely
[F1], shed light on doing this.

Working with a standard type of Fock space we are able to define a general
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type of vertex operator which depends on a non-zero scalar from C and to then
compute the commutator of two of these operators. This is presented in the
second section of this paper while, in the first section, we give the basics on
the Lie algebras, which are all of type A, which we will later go on to find
representations for. Already in Section 1 it is evident that there is somewhat of a
unified picture for these algebras. When we define our vertex operators in Section
2 the reader will see that we are using a Clifford algebra structure to define the
normal ordering we are using, just as was done in [F1]. In the third section we
introduce some Lie algebras associated to certain choices of subgroups, G, of
non-zero complex numbers as well as the choice of a positive integer M. These
Lie algebras are spanned by the moments of our vertex operators and hence,
by construction, we automatically have a representation for this Lie algebra. We
show the representations we have are completely reducible and find the irreducible
components. In the fourth and final section we show how certain choices of the
group G and the integer M lead to representations of the algebras of Section
1. Thus, we recover both the principal and homogeneous representations for the
affine algebras of type A as well as those for the EALA’s studied in [BS], [G1,2],
[G-KK]. It is from seeing the various applications in this fourth section that one
understands the unification of our treatment. Finally, we want to emphasize that
this unified treatment would not have been possible without first knowing the
particular special cases of this result.

1. Preliminaries

In this section we shall review some of the basics on Lie algebras coordinatized
by quantum tori. We present this from a general point of view which unifies our
treatment. For notation we always denote the integers, positive and negative
integers respectively by Z, Z,. and Z_.

Let g be any associative C-algebra with a symmetric bilinear form (-,-): gxg—
C such that (zy, z) = (v,y2) for z,y,z € g. Let A = @, cz.41 Aas v > 0, be any
Z"*1_graded associative algebra such that dimA, < oo for all @ € Z**!. Fix a
base (za)icr, of Aa, where I, is the index set corresponding to the subspace
Aq. Let do,dy, . .., d, be degree derivations of A such that d;x = a;x for z € A,,
i=0,1,...,vand a = (ag,...,a,) € Z'*!. We define a C-linear map ¢: A — C
by linear extension of

(1.1) 6(2:0) = {1 ifa=(0,...,0)

0 otherwise

for i € I,, @ € Z¥*'. The tensor product g &¢ A, with the canonical product
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(z®a)(y®b) = zy @ ab for x,y € g,a,b € A, is also an associative algebra.
Moreover, with the commutator product

[t®a,y O blioop = (z®a)(y®b) — (y@b)(z®a),

g ®c A forms a Z¥*!-graded Lie algebra. We call this algebra a loop-type Lie
algebra. Consider the vector space

(1.2) ga:=(goc A)®C

where (=<, Cei is a (v + 1)-dimensional vector space. There is an alter-
nating bilinear map [-,-]: §4 X §4 — g4 determined by the conditions

[C'L'J gA] = 07

[2@a,y®b =[r®0,yS bl + (z,9) Y é((dia)b)c;,
0<i<y

for z,y € g,a,b€ Aand i =0,1,...,v. It is straightforward to check that g4 is
a Lie algebra. Indeed, there is an exact sequence of Lie algebras with canonical
maps
0— P Coi +§a—g@cA—0,
0<iky
and so we have that §4 is a central extension of the loop-type Lie algebra g©¢ A.

Let Moo (C) = spanc{E;;|1 <1,j < oo} be the infinite matrix algebra, where
E;; is the infinite matrix with a 1 in the (4, j)-entry and zero’s elsewhere. We
also let M, (C) = spanc{E;;|1 < ,j < n}. This subspace of M (C) for n > 1 is
isomorphic to the usual matrix algebra of n x n matrices with entries in C.

Let Q@ = (g;;) be a (v + 1) x (v + 1) matrix with entries ¢;; € C* satisfying
gii =1 and ¢;; = qj‘il for 0 < 3,5 < v. The quantum torus associated with the
matrix @ is a unital associative C-algebra Cq := Cqg [t¥!,. .., tF] with generators
tg“l, . ..,tfl and relations titi_1 = ti_lti =1, tit; = gjtjty, for 0 < 4,5 <w. If
Q is a 2 X 2 matrix, so then v = 1, the matrix @ = (g;;) is determined by a single
¢ = qio- In this case we often simply denote Cg = (CQ[t(?l,tlil] by C,;. Choose
the bilinear form on M, (C) to be the trace form. Set A = Cg[td!,...,tE"),
with the Z¥*!-gradation A = @ wczv+1 Aa, where the subspace A, is spanned

by t& = 3ot -+ t%v for @ = (.. .,0,) € Z"*1. Define og: Z**1 x Z**' - C
by
(13) UQ(a, ﬂ) = H q;;.j’ei

0<i<j<y
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for o = (g, ..., 0), 8= (Bos---,5,) € Z"*1. Then we have
%8 = ag(a, B4,
The proof of the following Lemma is clear.

LEMMA 1.4: Let m,n > 1 be integers. Then there is a Lie algebra isomorphism

(Mm(C) © Mn(C))g, = (Mmn(C))c,

which is given by

Ei; ® By @t = EG_1yntk,(j—1)nt @ 1%,

cs—rcs, s=0,1,...,v,
for a = (ag,...,a,) € Z**, 1<i,j<m,1 <kl < n.

Let ﬁCQ be the Lie subalgebra of (Mm (C) @ M, (C))g, generated by elements
of the form E;; ® Ey © ta"(" DH=Fo gor 1 < 4,5 < m, 1 < k,I < n and
a = (ag,...,a,) € Z¥T!. The following result gives the structure of ﬁcQ.

PROPOSITION 1.5:

Ley 2 (Min(C) © Ma(0))2,.

where Cg = Co[tE!, ..., t¥] with Q = (g;), and Cg- = Co-[r&',. .., 72!] with
Q* = (g;;) such that gf; = ¢;; ifi,j # 0, and ¢}; = qf% if i =0 or j = 0.

Proof: Define a linear map f: (M,,(C) © M,(C))2

Ei; @ Em@1% ( H qlas) i O ® Dotk o — kdi;0k100,0C0,
1<s<v
Co—ncg, Cs—Cs, s=1,2,....v

b

for o = (agy...,) € Z¥*, 1 < 4,5 < mand 1 < kI < n. Let a =

(nao +1 = k,a1,...,a,), and & = (naf +1' — k,af,...,al) € Z"*'. Using
the identity
_ _ l/ I
(16) 00(8,&) = og-(a,a) [ "™
1<]<V
one can easily check that the map f is the desired Lie algebra isomorphism. ]

Putting together the two previous results we get the following identification
of LAcQ .
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COROLLARY 1.7:
‘C’CQ = (an(‘C))éQ*
where () and Q* are given in the previous proposition .

Let £ = £, be an n-th primitive root of unity and let E, F € M, (C) be defined
by saying

(1.8) E=FEn+Ex+ - +En1n+En, F=)Y Ei€™").

i=1
Then the following fact is well-known.

LEMMA 1.9: The set of matrices {F"Ej}lsi‘an forms a basis of the matrix
algebra M, (C) (so a basis of the general linear Lie algebra gl,,(C)). Moreover,

(1.10) EF ={FE, E"=F"=Idy,
and
1 n-—-1 ' o o n '
(1.11) E;; = - Z gk(l—z)FkE]—i’ FiEi — Zgz(l_l)El,I_ﬂf
k=0 =1

for 1 < i,j < n, where, for notation, we are letting [ denote the unique integer,
l,in {1,2,...,n} such that I = I[(modn).

Note that

n—1
E’ij ® Eki ® th(n—1)+l_kta — Z 68(1-k)Eij @ FsEl—k ® tgon—(v-l—kt({q . .t::;;,
s=0
n—1 ,
= Z ES(I_k)Eij QR F E*% @ tgot‘lll R tgu

3=0
where o = apn+1—k,for 1 <4,j <m, 1< k,l <n,and a = (o, 0y,...,0,) €
Z¥+'. From this one sees that the Lie subalgebra Lc, of (M (C) @ M, (C))2 o
has a basis of the form

(1.12) E; @ FFER @t ..t coer,..nye,

where 1 < i,j < m, 0 < k <n-1and lgly,...,I, € Z. Moreover, the
commutation relations of ﬁCQ are determined by

(1.13) [Ei; ® FFE® ©t%, By © F¥ E% © %)
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:5ﬁ,£aok’0_Q (a, al)Eg'j' @ Fk+k’an+a() ® to‘+0/
— 5j,i§a6k0Q(al, a)Ei’j @ Fk+&’Ea0+aio @ to‘"}'a,

+ n5]1 51] 5k+k' a+ar,06% ok E AgCg
0<s<v

for 1 <4,¢,5,7/ <m, 0<kk <n—-1 a=(ag...,o), & = (e,...,a}) €
ZVtl as well as the fact that the elements cg, . . ., ¢, are central in [ICQ.

From now on we will identify the Lie algebra (M,,(C) ® M,(C))¢ o With
(an(C))eq, and also identify /:'CQ with (an(C))fc\Q* , where Q = (g;), @* =
(¢7;) and, as above, ¢f; = ¢;; if i,j # 0, and ¢f; = ¢j; f i =0 or j = 0. For
simplicity we will write aa = (aa,...,aqa,) for a € Z and o € Z*; also we will
write

% =416 "+ 4ug
for go = (q10,---,qu0) € C”.
The Lie algebra structure (1.13) of L, can be described by formal power series

identities. For this purpose we let z, 21, z9 be formal variables. For 1 < ¢, j < m,
0<k<n-—1land a=(ay,...,q,) €LY, we set
(L14)  Xf(a,2) =) (B OFPE ot - 13v)27" € Lig [[2,27']),

€7

and 6(2) = Y_c5 24 (D6)(2) = ¥,cz 12" Then the algebra structure of Lc, is
described by the following lemma.

LEMMA 1.15: Let 1 < 4,5,4,7 <m, 0 < kK <n-1, a = (a,...,o),

o =(af,...,al) € Z¥. Then the following power series identity is equivalent to

(1.13):

K,
(1'16) [X aﬂ“l)MX (a ’42)] =djio(a,a )XIH—k (a + a,,f_krzl)é(é.—%?-)
<19y

_ o
3y, @) X[TF (o + o e s 2L )

§k31
, £ 2 ¥ 2
+n0ji0ij 077 gdatar 00 (@, ) (D5)< 2198 ) O+5(zlqa) > s
~130 0 1<s<y

where k = k(modn) and k € {0,1,...,n —1}.

As very spe01al cases, one chooses n =1, v = 0, in which case ECQ is just the
affine algebra gl (€) in the so-called homogeneous picture; while if one chooses
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m =1, v = 0 then ﬁCQ is the affine algebra gAln(C) in the so-called principal
picture. In these two cases, the identity (1.16) can simply be written as follows:
(117 )

05 (o), XRu(e)] = X358 (72) = X006 ( ) + 830(DB) (2 ) o,

for 1 < 14,4, k,l <m, for the first of these and

(118 (X (), Xhy(ea)] =XIP ()8 (£2) - XTP o (£2)

1

+ 1855 o(D6) (522 )eo.

for 0 <i,j <n—1,7i=1i(modn) and ¢ € {0,1,...,n — 1} for the second one.

Moreover, if we choose n = 1,v =1, or m = 1,v = 1, and write gio = = 4, then
ECQ gives respectively the homogeneous realization of the Lie algebra glm (Cy)s
and the principal realization of gl (Cqn). The algebra structure of these two
cases can be described as follows:

Z /‘J
[X0(r, 21), X3y (s, 22)] =X3(r + s,zl)(sjka(r—il) XQ(r+ 5, 2)8u6 (2

2

(1.19) + ai,éjk5r+s,0((1)5)( - )co n 7"6( = )cl)

for 1 <4,5, k1 <mand r,s € Z, for the first and

[Xil(r» 21)7"({1(8’32)] =‘Yi-1H(T + svf_]zl)(s(E 2)
q 21
z

- Xﬁy(r + s,E‘izg)é(Z“f)

£1z9 £izy
(1.20) + 1y15.00575,0 (D) (q’”zl)co + ”S(qrzl )cl>
for 1 <i,j<n,7,s€Z,and t+j =i+ j (modn) for the second.
Finally, if we choose v = 1, m,n > 1, write ¢;9 = ¢, in which case ﬁCQ is
isomorphic to the affine Lie algebra gl,,,,(Cgn ), which contains the special cases
mentioned above. The algebra structure is as follows:

. - B gklz
{XZI‘;( ”1)74X ( 7"2)]— ]Z/‘Xk_'—k (T+T 6 )5(ﬁ2—)

FEE _ ¢z
— 6 XTH (1 € ’“32)6(%)
k’

(1.21) +naji,(sij,(sm’oaml‘o{(D(;)(éq’“’~1)C + 5(5 Zzl)cl}.
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In subsequent sections we are going to give irreducible representations for a class
of Lie algebras which include the Lie algebras mentioned above.

2. Fock space and vertex operators

In this section, we shall define the Fock space we need and construct a family of
vertex operators acting on it. Then we go on to derive the commutation relations
between these vertex operators in various situations. Some of these commutation
relations were implicitly worked out in [G1]. However, we will use the ideas from
[F1] to tie a Clifford algebra structure to our vertex operators. This makes our
approach very natural and concise.

Let £1....,ep (M > 1) be symbols. We form lattices

M M—1
(2.1) FM = @ZEZ‘, QM = @ Z(&’i — Ei+1),
=1 i=1
with a symmetric bilinear form (g;,¢;) = ;5. We also extend this bilinear form
to the C-vector space
(2.2) Hy :=CoTI'y.

For each k € Z we take a copy of Hy; with basis labelled by ;(k) for 1 <i < M,
k € Z. That is, ¢;(k) is to be a copy of £;. We form a Lie algebra

(2.3) My = spanc{e;(k),c]l1 <i< M,k € Z},
with the Lie product
(2.4) [a(k), B(1)] = k(e B)dk+1,0¢

for o, 3 € Hyy, k,1 € Z, where ¢ is a central element. Let

(2.5) HE =span{e;(k)|k € Z4,1 < i< M}.
Then
(2.6) Har = Hi, +Ce + Hy,

forms a Heisenberg subalgebra of H ;.
Let S(H}y;) be the symmetric algebra over the abelian algebra H}, and let

(2.7) CTm] = P Ce?,

a€lpm
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be the group algebra over I'ys twisted by a 2-cocycle so that e®e® = e(a, B)e®t?
for o, B € T'pr. The cocycle

(2.8) €: FM x Ty — {:Jcl},

is defined by setting

(2-9) E(E‘i,é‘j) =1ifi <3, e(ei,gj) =-1ifi>j,

and

(2.10) € ( Z m;E;, Z njej> = H(G(Eiw Ej))mmj7
i j 1.5

for m;,n; € Z. One can easily check the following result.

LEMMA 2.11: € is bi-multiplicative on I'p;. Moreover,
el a) = (-1)@2, e(a, Be(B, a) = (-1)«7
for o, 8 € Q.
Now we define the Fock space
(2.12) Vi =S(Hy) @ CMu]

which affords representations for both the Lie algebra H s and the group algebra
C[T"ps] with the following actions:

e,(k).u@eﬁ:k( u)@eﬁ, fork € Zy,

0
Oei(—k)
ei(k)u®e’ = (gi(k)u)@e’, forkeZ._,

g (0)u® e? = (e, Blu® P,
cu®e? =uce®, and efuoe’ =ela,fud e*th,

fora,f €Ty, 1<i<M,and u € S(Hy,). For o € T'p, we define (we are using
the standard notation from [FLM])

(2.13) a(z) =S a(k)="* € (End Var)[[z, 2]
keZ
and
(2.14) E*(a,z) = exp( > O‘Eck)z-k> € (End Viy)[[z, 2~ ]).
k€L

Then the following lemma is straightforward.
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LEMMA 2.15: For a,3 € 'y, a,b € C* .= C~{0}, we have

E*(0,az2) = 1,{a(k), ET(B8,a2)] =0, ifk>0,

o), B (8,022)) = =(2, ) B (Baz) T (£2)"

k€T

E*(a,a2)E*(8,b2) = exp( Z %(a_ka(k) + b_kﬂ(k))z“k),

k€EZ +

2y (@)
E*(a,az1)E~(B,bz) = E™(3,bz0)ET(a, )(1 - 5’—2)

azy

Let v = oy (—1)%1 - . (=7)* © e® € Viy; we define a degree operator dy of
Var by setting

T
) 1
(2.16) dov = ( - szi - 5(/3, ﬁ))v.
=1

If @ is any non-zero complex number we define operators
(2.17) Puoed =09, atuwe’ =a*Pue el
for @, € 'y, v € S(Hy,). Then a® is just the evaluation map, at a, of the
operator z®. The following result is well-known.
LEMMA 2.18:

[do, E*(ar,a2)] = —D.E*(a,az) = < Z a(k)(a:)_k> E*(a,az),

k€Z

[(0),2°] =0, 2% = z(@Pehra

for a, 8 € T'pr, a € CX, where D, = d/dz.

We will need to raise some of the complex numbers which arise in our con-
struction below to various powers and care must be taken with this. We thus set
up the notation we use for this now. For any complex number a # 0, there is a
unique real number 6 € [0, 27) such that a = |a]e?V=T. We define

Lng =60v—1+In|al.

Viewing C* = C~{0} as multiplicative group, we call a subgroup G of C*
admissible if G = T x F, where T = (£) is a cyclic group of finite order |T'| and
F = (g;]j € J) is a free abelian group with free generators ¢;,j € J. For a =
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E7oqrt - i € G, where ng,ny,...,ng € Z,dy,...,ix € J, 0 < ng < |T| -1,
we define

(219) a” = er(—noLn§+n1ani1+---+nkanik)

for r € C.
Recall the definition of limit of formal power series from [FLM]. Let V be a
vector space over C. Let

~1a ~2 Z al]"l"‘2 € V[[zli y %2 1]]
©,J€Z

we say the limit, lim,,_,, f(21,2), exists if, for any [ € Z, a;;_; = 0 whenever
|i] >> 0, and write

(2:20) Jim fGen2) = ) = 3 (D)o

€2 N i€Z
For our purposes we need another notion of limit as well. Let
=Y Ci(z)z
i€z
where Cj(z) = 3, ¢;j(z)v; € C(z) ® V, and j runs over a finite set for each
fixed i € Z, and ¢;;(x) € C(z) are complex rational functions. We say the limit,

lim,_, o f(2,z), exists if the function ¢;;(z) has a usual limit at the point a € C
for all 4,5 € Z, and write

: . _ . ).
(221) liy £(2,) = f0,2) = 3 ( Se(a ).
i J
LEMMA 2.22: For1 < i< M, we have

(2.23) il_*ml — a(a‘ i —1) = ¢;(0),
. 1 ei(k) —k ei(k) _y —k

(2.24) 2%1—(1( Z k (az)™" - Z )= Z ei(k)z

keZy k€Z 4 k€Z+
Proof: For any v =u® e? € Vy, let m = —(g;, ) € Z. Then

1. am-1
1_a(a o= el

and

il_)ml 1= a(a i—1)w=—mv=¢g(0).v

as required. The second identity is clear. ]
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COROLLARY 2.25:

. /.. _ pE(.. — FE(e. . s~k
ll_)rril_a(E (€i,a2) — E*(g4,2)) = E* (g4, 2) Z ei(k)z~".
kEZ +
Proof: Note that
00 I 1
1 Ez(k) _ Ei(k) -
+ IR o - S N - N—k _ k
E (8i7a~) E (sh"’)—zl'[(z k (a’") ) (Z k z ’
=1 k€EZ 4 k€Z 4

and Al — Bl = (A - B)S\ L al-1-d BJ; we obtain by applying the previous
=0
lemma

lim T a(Ei(&,aZ) — E%(e4,2))
o -1
R T

COROLLARY 2.26:

. 1
lim
a—1 —Qa

(E*(—ei,2)E%(g5,02) — 1) = Z ei(k)z"%.

kEZ +
Proof: This follows from the fact that

Ei(—si, 2)EX(e;,a2) - 1= Ei(—si, z)(Ei(Ei,az) — E*(gy, 2)),
and the previous corollary. |
For o € 'y, we define
(2.27) X(o,z) = E™ (=, 2) Et(—a, z)e® 2% 2(»2)/2,
We may formally write

(2.28) X(a,z) = Z xrp(a)zF,

k€Z+(a,a)/2

where zx(a) € End(Vy) for k € Z + (o, «)/2. It is known from [F1] that, if
(a, @) = 1, the operators {zx(a), zx(—a)|k € Z + 1} generate a Clifford algebra
with the relations

(2.29)  {zx(a),z_i(~)} = ki, {zr(a),zi(a)} =0, {zk(-), 2i(~)} =0

for all k,l € Z + % Related to this Clifford structure, we define the following
normal ordering (see [F1] and [G3]):

(230) : LL‘k(Ei)I_l(—Ej) = Ik(&"i)l?_l(—é‘j) - 6ij6k19(k)
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fork,lEZ-i—%,1gi,jSM,whereO(k):0ifk<0,0(k)=1ifk>0. By
applying Lemmas 2.15 and 2.18, one can easily prove the following result:

LEMMA 2.31: For1<1i,7 <M, and a € C*, we have

: X(&’i, 21)X(-6j,a22) :

— azq\ —%ij (aza)éaﬂ Aeiei—g)/2 —(esrei—e;)/2
= (1 - 2 ) —Z—(ls:]/z_( (611\-*]) (a~2) J ¥

€5 25 (a2g) T BT (—&4,21) E (g, a22) EY (—€4, 21) E* (g5, a29) — 517‘)-
In particular, if i # j, then
(2.32)  :X(ei,21)X(—¢j,a2z) —e(ez,sj)zl/ (az2)Y2e5 7% 25 (azy)~®
“E7(—&5,21)E™ (gj,a22) EY (=24, 1) EY (g5, a22),
and, if i = j, then

(2.33) (1 - a—z2-> : X (&4, 21) X (—&4,a22)

<1

(( - )EiE_(—Ei,21)E_(€i,az2)E+(—si,zl)E+(ai,a32) — 1)_

azo

_ (azg)?

o

PRrROPOSITION 2.34: For1<i,5 < M, and a € C*, we have

: X (&4, 2) X (—¢j,0az) :
(e e5)z %( )% S 2% (az) " B (—e4, 2) E~ (g5, a2) Bt (—¢y, 2)

xE*(gj,az) ifi+#j,

={ &(2) ifi=j, a=1,
‘{1_/2 (@™ E~(—&4,2)E~(g4,a2) E*(—¢;, 2) E* (g4,a2) — 1)
ifi=j, a#1.

Proof: Taking the limit 29 — 27 in (2.32) and (2.33) gives the first and third
identities. The second identity follows from Lemma, 2.22, Corollary 2.26 and the
third identity by taking the limit ¢ — 1. |

Remark 2.35: Note that the second identity in Proposition 2.34 was given in
[F1].

Definition 2.36: For a € C*, 1< i,j < M, we define
Xij(a, z) =t X(es, 2)X(—¢j,a2) :

Now we can state our main theorem of this section.
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THEOREM 2.37: Fora,be CX and 1<1i,5,k,l < M, we have:
(i) if ab # 1, then
(2.38) [Xij ((L, 31), ‘X’k[(b, 22)] qu(ab, 21)(5jk(5(;—;) — ij (ab, 22)511(5(é1;)
a%b%

Pzt (0Gs) -9(5))e

(ii) ifab =1, then

(2.39) [Xijla, z1), Xpi(b, 22)] =(Xar(1, 21)05k — Xij (1, 22)6:0)8 ( Ji)
22
+ 5i‘5ﬂ’c(D5)(a_z1)c‘
The proof of Theorem 2.37 will be carried out in several steps. In what follows
we will freely use the following two lemmas. Lemma 2.40 can be found in [FLM]

and [K], and Lemma 2.43 can be found in [J], [G1, 2] or [BS].

LEMMA 2.40: Let Y'(z1, 22) be a formal power series in zy, z9 with coefficients in
a vector space, such that im,, ., f(z1,22) exists. Then

(2.41) )"(21,32)5((1221) = Y(21,az1)5((21>,
(2.42) Y(;l,ZQ)(Da)(:;) - Y(zl,azl)(Dé)(:jl) — (D2, Y (21, 22))8 a”fl)
fora € C*.

LEMMA 2.43: Suppose a,b € C*. Then

2o\ 1 bzo\ 1 2 0z 21\ ! 2\ -1
(-2 - ) - - 20
azy 7 29 bzo bzo

B (1~ab)‘1%(6<%>—6(—b%)> ifab;él,~2
| =po) () ifab=1.

Now we divide the proof for Theorem 2.37 into four different cases.
Casel. i #j,k#[;Case 2. i=j,k#1l,and ab# 1; Case 3. i = j, k #1,
and ab=1; Case 4. i = j,k = [.
We shall check the cases 2 and 4, and leave the other cases to the reader.
CASE 2: i=3j, ks, and ab # 1.
If a =1, then
Xijla, 2z1) = €:(z1).
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Since
[ei(z1), €57 = (bt — bar)e™* ¢,
z n
lei(z1), B*(—ex» 22)] = Z 5z‘k<—1) E*(—ex, 22),
22
n€Z 4
and
[ei(21), Ex (g1, b22)) Z 511(—) *(e1,b22),
neEZy
we have

[Xij (a, Zl), Xkl(b, Zz)] = [Ei (21), Xkl(b, 22)] = Xkl(b, 22)

Isr. J. Math.

.<5ik—§ig+5ik Z (2)n+55k Z (?)n—&z Z (%)n—&‘z Z (%)")

~“2

n€EZ - n€L4 n€Z_ n€Ly

=Xkl(b, Zg)((szk(s(z—j) - 6116(;712))
=Xi(0,20)0( 2 ) = Xy (b 20306 (),

as needed.

If a # 1, then

al/?

Xij(a,z1) =

Applying Lemmas 2.15 and 2.18, we get

(2.45) [Xij(a, 21)y Xri(b, 22)]
RV
=T bhe(ek, en)e TN

-E~(—¢€;,21)E (ei,a21)E™ (—¢k, 22) E~ (€1, b22)
FE

F(~ei,21)E* (64, a21) E1 (—€k, 20) ET (1, b22)Q (21, 22),

(a=% B~ (=&, 21)E™ (65, 021) E¥ (=i, 21) E¥ (4,021) — 1).
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where

51’ o _61' i 51‘
Q(z1, 22) za"(sf’sk"”)(l - 2—2) ’ (1 -2 ) ‘ (1 b“"’) 1(1 _ bﬁ) :
1 az 1 azy
_ (1 _ Z_1>6ik (1 _ 3_1)—6u (1 _ azl)—éik (1 3 a:l)éil
) b32 z9 b32
—glit—dir (1 _ _:3)5“: (1 _ bzg>5u ((1 22 )—§ik (1 b72) i
21 azy azy

~1

- (= ()T (A (1 )T (1 2T
0 W0 kil

_) () iti=kifl
m—IWGT)iH#kJ:L

We thus have (2.38) by applying Lemma 2.40.

CaseE 4: i=j,k=1
Note that
Xij(a, 1)
_ { ‘{I_/Z (a5 E~(—¢i,21)E " (gi,a21) ET (—€4,21)Et (g5,a21) - 1) if i = j,a # 1,

gi(z1) ifi=ja=1;
‘X’kl(b, 22)

_ {b1/2<b—€kE (s 22) B (e bsa) B (=, 22) B (2, bea)—1)if b = Lb # 1,

er(z2) ifh=10b=1.

We consider three subcases. First we assume that a = b = 1; then
[Xii(a,z1), Xei(b, 22)] = [€:(21), ex(22)] = 5ik(D‘s)(§>7

as desired.
Next we assume a = 1, b # 1; then

[Xi;(a, 21), Xpa(b, 22)] = [e5(21), Xii(b, 22))
bl/2

= 1= bb_ekE—(—Ek,Zg)E_(&’k,bZQ)E+(-—€k,32)E+(Ek, 22)

(05 @) S (2 -0 T @) -5 (@)
nez. ' . 1 nez_ 2 ez, 02
b1/2

=1 bb“ekE'(—ek,22)E_(€kqb22)E+( ek 22) EY (ek, b22)din (5(£>_5(b3:12)>

= Xi(ab, z )51"5(6;21) Xj(ab, z2) u5( ) a%_bjbéuéjk(é(:—;)—J(:—l)),

1 b22

~1
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as required.
Finally, we assume a # 1, b # 1; then

(2.47) [Xij(a, 21), Xxi(b, 22)]
Ql/2 pl/2
= T—al_ ba'iib_EkE_(—Ei, Zl)E—(—Ek, 22)‘E_({;‘i7 a;l)

-E7 (g, bz)EY (—¢4, 21)EY (—¢k, 22) ET (i, a21) E (g, 0225 (21, 22),

where

St =(1-2)" (120 22) (- 72)”
(2 ) )
SO (VRN

G- -2

(
(1-2)(1- =)= s (2) ifi = k,ab=1,
0 1fi7ék,

(
(1= 2)(1- ) 0(2) ~()) w-ka AL

Substitute S(z1,22) back into (2.47) and apply Lemma 2.40 to get (2.38) and
(2.39). This now completes the proof of Theorem 2.37.

Remark 2.48: 1f ab # 1, we have

5(22) -s(2) = %;(1 - @m(Z)"

thus

%&l@k ((5(;—;) - 6(;712)) = a%b%éiléjk Z 1- (a7 l—fa(l:;m (az_;)m

-otta( 5 (Sor)re 2 (-Zer)G2))

which gives

1,1
Jim i (5(22) ~o(52)

=autn( T ()" + T m(2)") = unon ()
Z

mEL4 meZ_
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This indicates that the second identity of Theorem 2.37 can be obtained from
the first one by taking the limit as b — a~ 1.

3. Lie algebras and representations

In this section we are going to define a class of Lie algebras from our vertex op-
erators which will correspond to admissible subgroups of C*. Indeed, for some
choice of the admissible group G and positive integer M, the Lie algebra G(G, M)
(defined below) of operators, which act on the Fock space Vyr, will give realiza-
tions of some infinite-dimensional Lie algebras studied in Section 1. This will
include the affine algebra gﬁA\,I(C) in both the principal and homogeneous pic-
tures as well as some Lie algebras with quantum torus coordinates. Towards this
end, we first introduce some new notations for the vertex operators constructed
in the preceding section.

Definition 3.1: Fora,be C*,1<1,j < M, we set X;;(a,b,2) := X;;(a"1b,az),

and write

(32) Xij(a,b,z) = inj(k,a,b)z_k
keZ

where z;;(k,a,b) € EndV)y.
With this notation Theorem 2.37 can be re-written as follows:
THEOREM 3.3: Let ay,aq,b1,b2 € C*, and 1 <1i,j,k,l < M. We have
(i) if ayaz # bibs, then
[Xij(ar, b1, 21), Xpi(ag, ba, 22)]

=X, 202 Yo (22 — g (o, 222, 205 (22

G 0 i 5(322) - o(322))

(11) ifa1a2 = blbg, then

[Xij(ala b17 31)7 Xkl(U’?v b2a 32)]

=X; (al, %, zl)(sjk(S(%f-j—f) - Xu;j <a2, %—2", Z2)(5il5<(z;2)

+ 6i15jk(D5) (foi)c

Fix an integer M > 1 and an admissible subgroup G of C*. Let G(G, M) be
the vector space spanned by ¢ and all of the coefficients of the vertex operators
Xij(a,b,z) for all 1 < 4,5 < M, and a,b € G. Then we have the following result.
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THEOREM 3.4: G(G, M) forms a Lie algebra of operators acting on the Fock

space V. Moreover,
Vi =~ GV
kEZ

where Vj‘(f) = ekeu+Qnm @ S(Hy,), and VA(,;C) is an irreducible G(G, M )-modaule.

Proof: Tt is obvious from Theorem 3.3 that G(G, M) is a Lie algebra and that
V,f,f Visag (G, M)-module. To see it is irreducible, we note that the Heisenberg
algebra H M C Hur, and H s is spanned by the coefficient operators of the vertex
operators X;;(1,1,2) for 1 <4 < M. This then implies that, if W is a non-zero
submodule of V,f,f ), we can choose a non-zero element of the form v = ekM+e g1
€ W for some o € Qps. Moreover, it is easy to check that

zij(ni; — 1,1, 1).0 = e(eg, 65)e(es — 5, kenr + a)ek€M+a+E"_€f

for all 1 <i # j < M, where n;; = (¢; — &, kepr + ) € Z. Therefore eFsM+8 @ 1
€ W for any § € Qps. This thus gives W = VA(f ) as needed. |

Remark 3.5: Note that the coefficients of the vertex operators Xj;(a,z) and
Xj(a,bz) for any given a,b € G span the same space. Thus G(G, M) is spanned
by ¢ and the coefficients of the operators X;;(a,z) for 1 < ¢, < M,a € G.
Therefore, it follows from Theorem 4.25 in [G1] that G(G, M) is an affinization
of the Lie algebra glinr(R[t,t~1;7]), where R = C[G] is the group algebra and
R[t,t™1; 7] is the skew Laurent polynomial ring.

Recall definition (2.19). We extend the cocycle map e: Hy x Hy — {C*} by
defining

(3.6) 6(2”51"23':'52') = H(e(&.i’sj))msj

for r;,s; € C. It is obvious that

E(Ol + 5, 7) = 6(0‘» 'Y)E(Bv 7)» e(a, B+ 7) = 6((1, B)G(a’ 7)

for o, 3,y € Hypr. Moreover, if we restrict € to I'ys x I'pz, then € gives us the
2-cocycle defined in the previous section.

Let o =¢; —¢iqy1, 0 =1,.... M —1,and apy =€y + -+ ep. Then Qp =
@g;lZai and Ty = @fil Za;. Let Q% = {a € C®z Quml(an Qn) € Z} be
the dual of the lattice Qs and set

(3.7) LS ={a € Hy = Coz Tml(a, Qum) € Z}.
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Then LY, = Q% @ Coaps. Let I = LY, /Qpr then we have a @ pr-coset decompo-
M M
sition of LY,
(3.8) LY = PO +Qu),
i€l

for some A; € LY,.

ProprosiTION 3.9: The Lie algebra of operators, G(G, M), acts on the space
VO = S(H5,) © Cl@wm + A, and V) affords an irreducible representation of
G(G, M) fori e I =L%/Qu. Moreover, V") 2 Vi) if and only if i = j.

Proof: For u@e®*Xi € ij,,)‘i), u € S(Hyy), @ € Qur, we note that

Pu@ ety = 2P athy g et o7 (u @ e tN) = a(othy @ ot

P (u® e = e(B, 0 + \)u © @AM

where (B,a+ X)) € Z, (v,a+ A) €C, e(B,a+ ) € C for B € Qu, v €Ty
and a € G. This implies that X;;(a,b, 2).(u © e2™) € ijj‘i)[[z,z_l]], and so
the Lie algebra G(G, M) acts on the space VA(} ) The irreducibility of Vlf,l'\ ) for
i € I, follows from a similar argument as in Theorem 3.4. The last part of this
proposition is clear. 1

4. Applications

In this section we assume the admissible subgroup G has the form G =T x F C
C*, where T = (£) is generated by a root of unity &, and F is a free group
with a finite number of generators. First, let G = {1} and let M > 2 be any
integer. Then the Lie algebra G(G, M) is generated by the coefficients of the
vertex operators X;;(1,1,2) for all 1 <4, j < M. Moreover, from Theorem 3.3,
we see that

- - —Y. s(22Y v, s L
[Xi5(1,1, 21), Xi(1,1, 29)] —)&11(1,1,21)5Jk5(z1) Xk;(1,1,42)5u5(22)
22
(4.1) + 5tl5]k(D5) (Z)

for 1 < 4,5 < M. Comparing (4.1) with (1.17), we obtain the following result
which was originally due to [F1]; see also [FK] and [S].

COROLLARY 4.2: Let G = {1} and M > 2. Then G(G, M) gives a representation
of the affine algebra glp(C) in the homogeneous picture on the Fock space Vi,



50 S. BERMAN, Y. GAO AND S. TAN Isr. J. Math.

and the representation is given by the mapping:
Ei; @ t§ — xi5(k,1,1),
co > C

for1 <i,j<Mandkce€lZ

Next we choose G to be a cyclic group of order N > 2 with generator £ = &y,
and take M = 1. Note that

Xll(éi’ gj’ Z) = Xll(gi_j_lv 6_17 §j+lz)

for 0 < 4,5 < N — 1. This implies that the Lie algebra G(G, M) is generated by
the coefficients of the vertex operators Xq3(£'=1,£671,2) for 0 <¢ < N —1. From
Theorem 3.3 we have

(X1 (€1 €Y 21), X1 (&7 €71, 22)]
X11(§i—17€-j_1»21)5(%f—2) - Xll(fj_lﬂﬁ'i_l,zz)é(iz—‘) + (Dé)(yﬂ)c
ifi+j=0(modN) ,

= Xll(gifl’g—j—l’zl)é(%fl) _Xll(gj—1,£—i—1,z2)5(§'_z_1)
S (5(£22) - 8(52))if i+ # 0 (mod V).

21

Recalling the definition of X;;(a, b, z), we have

Xn@"“l,&‘j*l,zl)é(%) = X11(€i—1»f_j'l,ﬁjzz)ts(ejm)

z1
L J
= X e 26 (22),
21
while
J—1 p—i-1 €21y _ i-1 p—j—1 ¢j £z
Xn(&7,¢ ,22)5(—) =Xn¢77¢ 21)5(—)
29 zZ2
_ i+j—1 -1 eﬁ
Xnl 67 )i ()
for 0 <¢,j < N — 1. Therefore we get

(4'3) [‘Xll(gi_lag—l’zl)lel(gj_lvg_l,22)]

X11(§i+j‘1,€‘1,z2)5(%f“2) - X11(§i+j_1»§'1,z1)5(%_1) + (Dé)(%)c
ifi+j =0 (modN)
B X11(£i+j_l’§*l’z2)‘s<%f_2) - X11(§i+j_1a£—1721)5(§iz_1)

22

S o(22) (o £

21
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Comparing this with the identity (1.18), we obtain the following result which was
originally due to [F1] and [KKLW].

COROLLARY 4.4: Let M =1, and let G be the group generated by &, where £ is
an N-th primitive root of unity for N > 2. Then the Lie algebra G(G, M) gives a
representation of the affine algebra gﬁ;(C) on the Fock space V} in the principal
picture. The representation is given by the mapping

FiEF otk oy z1(k, &) + eginf&coc f1<i<N-1,
$11(k,£—1, 5_1) ifi= 0,

HC
Cg -
N

for k € Z.

Next we choose M > 2 and G = (q) where ¢ # 0 is not a root of unity. Note
that X;;(a,b,2) = X;;(1,a7'b,az) for a,b € G. We see that the Lie algebra
G(G,M) is generated by the coefficients of the vertex operators of the form
Xi;(1,4",z) forall r € Z and 1 < 4,5 < M. We apply Theorem 3.3 to obtain:

(i) if r + 5 =0, then

(4.5) [(Xi5(L,q", 21), Xwi(1,¢°, 22)]
oy TS NS 22 v r+s , \5. 21 5. 22 .
- 31(1,{7 s"l)égké(q,rZI) ‘ij(laq 7~2)5@£5(—q332) -%—531(53&(95)((1?:1)6,
(i) if r + s # 0, then
(46) [‘Y‘ij(lvqr7Zl)ﬂ‘Ykl(laqsazQ)]
=X;(1 TS L\ <2 _ ] s 5. 21
Xau(l,q"™%, 1)01k5(—~qrzl) Xij(1,¢™%°, 2)5115((1522)
¢+
Z9 2
o St (5(——q%1) - 5(qu2 ))c

Comparing the above two identities with the identity (1.19), we derive the
following result which was given in [G1].

COROLLARY 4.7: Let M > 2, and let G = (q) be the group generated by q # 0
where q is not a root of unity. Then the Lie algebra G(G, M) of operators, acting
on Vi, gives a representation of the Lie algebra @(CQ). The representation is
given by the mapping

r/2 i
E; ot — T (m,1,4") + £6ij0moc  if 7 #0,
zi;(m,1,1) ifr =0,
co—e,e1 0
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for m,r € Z.

Remark 4.8: The representation of the Lie algebra gﬁA\,I(CQ) given in Corollary
4.7 is called the homogeneous realization. This is because of the fact that we
are using the homogeneous gradation. Moreover, the algebra G(G, M) contains
a subalgebra of G((1), M) which is generated by the operators w;;(m,1,1) for
1<4,j <M and me Z, and it is clear that this subalgebra is nothing but the
affine algebra g/lA\/I(C) in the homogeneous picture.

Similarly, we may have the principal realization of the Lie algebra g/l;((CQ)
For this purpose, we choose the group G = (£,q) where ¢ # 0 is not a root
of unity and £ is a N-th primitive root of unity. Let M = 1. Then the Lie
algebra G(G, M) is generated by the coefficients of the vertex operators of the
form Xy;(¢71,671¢",2) forall 7 € Z and 0 < i < N — 1. From Theorem 3.3 we
have:

(i)ifr+s=0and i +j =0 (mod N), then

(X1 (67167, 21), X1 (€71, €71¢%, 22))

J
=X g (€ g7 £750)6 2
11(§ §°¢ 7,6 ) (qul)

X (S + 0 (52) s

q° 22
(ii) f r + s #0 or ¢ + j # O(mod V), then
[Xll(gi_lag—lqrv zl)v Xll(éj_17€_1q37z2)]

J 5
=X i+j—1’ -1 r+s’ -7 5 £ <2
n(EH e e ()

_ X11(£i+j—l, é——lq?‘-{-s’ €—iz2)5(£"21 )

@22

e%LLngq%

Y e g (‘5(%) - 5(522))0'

Thus if we write

Xu(h €7 2) if 7 = 0,7 = 0(mod N)
ei/2LnE r/2

e i—1 #—1_7r _
Xu(€¢ q’z)_{Xu({i‘l,ﬁ‘lqr,z)-f———j—gl_q, ¢ otherwise

for r € Z and 0 < i < N — 1, then the above two identities can be written as one
identity

(4’9) [Xll(éi_17§_lqr, 21), Xn(fj—l,{_lqs, 22)]



Vol. 134, 2003 VERTEX OPERATOR CONSTRUCTIONS 53

&2y
q %

) _ Xn(gi+j—17§_1qr+s’€_i22)é(§iz1)

:Xu(ﬁiﬂ_l,§_lqr+s’€_j21)5( %

&),

+67-+5.00755,0(D8) (qrz1

Comparing this with the identity (1.20), we get the following result which was
given in [BS] for the N = 2 case and in [G2] for arbitrary N.

COROLLARY 4.10: Let M =1 and let G = (£, q) be an admissible subgroup of
C* generated by q with q # 0 not a root of unity, and £ is an N-th primitive
root of unity for N > 2. Then the Lie algebra G(G, M) of operators, acting on
V1, gives a representation of the algebra a;(CqN }. The representation is given
by the mapping

ei/ZLnE r/2
e’ 9’

211(m, €71, €71¢7) + Omo Tt
FiE™ @ thh s ifi # 0(mod N) or r # 0,
r(m, 71,67
ifi = 0(mod N) and r = 0,

e 0
€0 » €1
N

forreZand0<i< N —1.

Remark 4.11: In general, let M, N > 2 be integers, G = (£, q1, . - -, q,) an admis-
sible subgroup of C* with finitely many generators, where qi,...,q, are the free
generators of G and £ is an N-th root of unity. Then the Lie algebra G(G, M) of
operators, acting on the Fock space Vs, gives a representation to the Lie algebra
9lain (Cq) where the quantum torus Co = ColtE!, 1!, ... 1] is determined
by the matrix Q@ = (i) (w+1)x(v+1) With gio = ¢, g0; = qi_N for 1 <i< v, and
gi; = 1 for all other values of ¢, j.

In particular, if v = 1, that is G = (£,¢), then the Lie algebra G(G,M) is
generated by the coefficient operators of the vertex operators X;; (€F-1,¢71¢", 2)

for 1 <4, < M,1<k<N-1andr € Z Moreover, from Theorem 3.3, we
have:
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(i) if k+ k' #0or r + s # 0, then
[Xii (€51, 671q7, 1), Xurjo (€F 71,6727, 20)]
_ 1k 7 z
— ji’Xij’(gk 1?6 1 qu+'r Z) (€T~2>
q 2
— 53,,£Xélj(ék’—l’s—l—qu+r” zz)&(ﬁ)
k+k’ r4r’ ’
+e—i2—Ln€q+T5-~15-w(5<€k ;:2) (f 21))
€k+k’ _ qr+r’ JrrIe qrz qr’z2
k+k'—1 41 r4v' =K §kl~2
=85 X5 (€ &€ 21)5((1“1)
R4k =1 o—1 r4r o—F 3521
— 850 Xirj (€ I N 22)5( — )
q z2
u(;.. s (6 €2 5(£kzl
+ ER+R _ grar! 335" q 2 - q 2 ¢
and
(iiyif k+ k' =0and r+ s= 0, then
[Xij(gk_lvé._qu7Zl)’X‘i’j (£k’-17£_1quaz2)]
=8 X (R g— 1=k ! 5 22
e G e A, (M)
- ’_ 1 r ’ A Z
_5j’i4Xi’j(§k 1?6 1 kq +r .2 ) (& 1) + 4. 115] z(D5)(§T~2)
q z1
1 ¢=1 gk, € 2
=6;0 X35 (6,677,¢ ~1)5(qr—zl)
£k

5]1 i (é- a€ ’g_k32)5(qu

q 21

Set

_ij(gk_lwf_l r’z)

r/2

‘2) +5ji,5j,i(05)(€k122)c.

_ X”(glC Le1gm, z)+<5”—k/—2:n—€q— if k # 0(mod N) or r # 0,
Xi; (671671, 2) if k= 0(mod N) and r = 0.

Then we have

[YU (gk—l’ £~1qrw 21), y’i'j’ (ékl_l’ g—lqu ) 22)]
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kl
_ Y z
5 X (€ e s (£2)

531 (§k+k -1 g1, r4r’ 5— 2)8 (fk21)

q" 2

K
+ 522'53 z‘Slc+lc’ 7 O(D‘S)({ ~2)C-

7‘/71
Comparing this identity with identity (1.21), we get

COROLLARY 4.12: Let M,N > 2, and let G = (£, q) be an admissible subgroup
of C* generated by q with ¢ # 0 not a root of unity, and £ an N-th primitive
root of unity. Then the Lie algebra G(G, M) of operators, acting on Vy, gives a
representation of the algebra m(ch ), and the representation is given by the
mapping

E; @ FFE™ @ t7t]

o 1 zi(m, gk ¢ q)+6moéz]e—’ﬁL—nE€T—“c if k # 0(mod N)c or r # 0,
zi(m, €717 ifk =0(mod N) and r = 0,
c
CoHN,Cll—)O

forreZ and0<k<N-1.

The Lie algebra G(G, M) given in the previous corollary contains two inter-
esting subalgebras which give representations to the Lie algebras m(qu) and
g/lA\,I(Cq). Moreover, we will see that these two subalgebras contain subalgebras
that give representations to the affine algebras EZE(C) of level M and g/l]\\,I(C) of
level N, respectively. Indeed, for a,b € G = (£, ¢q), let

(4.13) Y(a,b,z) = Zka a,b, 2)

and formally write

(4.14) Y(a,b,2) = Z y(m,a,b)z™™

mez

Let £; be the Lie algebra generated by all of the coefficients of Y (a, b, 2) for
a,b € G. We note that

(4.15) Y€, &¢° 2) = Y€1, &% g 2),
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so L, is indeed generated by the coefficients of the vertex operators with the form
Y(¢i-1,¢71¢",2) for r € Z and 0 < i < N — 1. Moreover, applying Theorem 3.3,
we have, if r + s# 0 or i+ j # 0(mod N),

(4.16) V(€71 20), V(€767 )]

(X (€167, 21), Xiw(€771, €745, 29)]

M=

>
Il
—

(ka(si“-l,f-lq”s,s-le)é(%)

q 2

M=

b
Il

1

- ka(féﬂ_ly5_19’7“75_%2)5(Slzl )

q°z2
e F Lneg 5 £z 5 £n
+ giti — grts ( (qrzl) - (quQ))

:Y(€i+j—1,g—lqr+s’§——jzl)6(£jﬁ) _ Y(£i+j—17§—-1qr+s, §—jzz)6(§izl )

q 21 qszo
eFng™t  giz, £z
+ — ) ) ,
Ez+] _ qr+s qrzl qsz2

while if »r + s =0 and ¢ + j = 0(mod N), then

(4.17) Y (€167, 21), V(€767 1%, 29))
f:ka (1671 21), Xew (€971, 671, 22)]
=

Pt R o

- ka(e-l,a-l,s—fza)é(%) + (Dé)(gi—j’f))

:Y(E_l,ﬁ—l»E_jn)é(in) —Y(EENET ) ()E 21) +M(D‘”(§.z1)'

Therefore, if we define

1./2Ln§ r/2

V(e 2) + MEm—t—c ifr#0ori#0,

Trei—1 =17 —
Y(§ aé q 72)_{1/.(6_1’5_1’;/) ifr:{)andz=0,

then we can rewrite the two identities (4.16) and (4.17) as just one identity

(418) [Y(Ei—l,s—lqr, Zl)aY(Ej—lﬁé_lqsa‘zZ)]
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Pe e e e e s (52) + mon (52

q
Therefore we have the following result:

PROPOSITION 4.19: The Lie algebra £, of operators acting on Vi gives a rep-
resentation of the Lie algebra gln(Cy~ ), and the representation is given by the
mapping

y(m,€1,671q") + MR 5, e
FE™ @t v ifi# 0(mod N) or r # 0,
y(m,1,1)
ifi = 0(mod N) and r = 0,
co— Mc,eqy — 0
forreZ and)0<i<N-1.

Recall from Corollary 4.7 that the Fock space V) affords a representation of

the Lie algebra G({¢), M) C G({£,q), M), where £, q are given in Corollary 4.10,
and

G{{g), M) = span{c and z;;(m,1,¢")| for m,r € Z,1 < 4,5 < M}.
Now we define a subalgebra of G({(g), M) C G({£,q), M)
Ly =spanf{c and x;;(Nm,1,¢")| for m,7 € Z,1 < 4,5 < M}.
Then we have

PROPOSITION 4.20: Ly forms a Lie subalgebra of G({q), M), and L3 is also
isomorphic to G({q), M) via the isomorphism given by

zij(m,1,q") = x;;(Nm,1,4"),c — Ne.

Therefore L4 gives a representation of g/l]\V(CqN )-

PRroPOSITION 4.21: For m,n,r,s,€ Z and i # 0 (modN), 1 <k #1< M, we
have
(4.22)

[y(m’ fi_l,f_qu),SL‘k[(NTl, l,qs)] — (qun _ qsm)mkl(m + Nn, {i—l’f—lqr+3).
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Proof: We apply Theorem 3.3 to obtain

[Y(gi‘lig—lqrv'd) Xkl(l q 1‘*2) I:ZX](gl 175 q »"*1 Xkl(l q 1"'2]

M 2 a £tz
;};f{ il 61 Y 1qr+svzl) Jk(s(f - ) i (L, A 72)6j16( qsz;l)}
=Xu(€ L€ n ( ) K r+s’22)6(€;z1)
i—1
=Xp (N7, 2) ( ) Xu(€h e gt q_331)5(€;sz§1)‘

This then gives

[y(m, €71, 6717), 2r(n, 1,¢°)] = €7(¢™ — ¢*™E ™ )aa(m + n, €71, €71¢7),

which immediately implies (4.22). |

Remark 4.23: Let G; C £; CG({¢,q), M), i =1,2, be such that

G1 = span{candy(m, &, &) form € Z,0<i < N -1},
G = span{candz;;(Nm,1,1)| for m € Z,1 <4, < M}.

Then the two subalgebras G1,G2 of G((€,q), ) respectively give representations
of the affine algebra gl N(C) of level M and gl M((C) of level N. Let G} be the
derived algebras of G;. Then we have the so-called dual pair property given in
[F1]: [G1,G5] = (0). However, clearly, we have [L], £5] # (0).
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